top of page

Part 7: Pandas Magic: Mastering Data Reading and Manipulation

Writer's picture: Revanth Reddy TondapuRevanth Reddy Tondapu

Mastering Data Reading and Manipulation With Pandas
Mastering Data Reading and Manipulation With Pandas

Hello everyone! Today, we continue our exciting journey into the world of Pandas, the powerful Python library for data manipulation and analysis. In our previous post, we explored accessing data elements, in-built functions like value_counts and unique, and how to handle DataFrames. Now, let’s dive deeper into reading various types of data files and understanding more in-built functions.


Reading Different File Formats with Pandas

Reading CSV Files

CSV (Comma-Separated Values) files are one of the most common data formats. Let's start by reading a simple CSV file.

import pandas as pd

# Reading a CSV file
df = pd.read_csv('data.csv')
print(df.head())  # Display the first 5 rows

Reading Excel Files

Pandas can also read Excel files. You need to specify the sheet name if your Excel file contains multiple sheets.

# Reading an Excel file
df_excel = pd.read_excel('data.xlsx', sheet_name='Sheet1')
print(df_excel.head())

Reading Other File Formats

Pandas can read various other file formats, such as JSON, HTML, and SQL databases. Here are some examples:

# Reading a JSON file
df_json = pd.read_json('data.json')
print(df_json.head())

# Reading data from an HTML table
df_html = pd.read_html('https://example.com/table')[0]
print(df_html.head())

Exploring Data with In-Built Functions

Pandas provides several in-built functions to help you understand your data better.

info()

The info() function provides a summary of the DataFrame, including the data types and non-null counts.

print(df.info())

describe()

The describe() function provides descriptive statistics for numerical columns.

print(df.describe())

value_counts()

The value_counts() function counts the unique values in a column.

print(df['Column1'].value_counts())

unique()

The unique() function returns the unique values in a column.

print(df['Column1'].unique())

Handling Different Delimiters in CSV Files

Sometimes, CSV files use different delimiters. Here’s how you can handle them:

Example with Semicolon (;) as Delimiter

If your CSV file uses a semicolon (;) as a delimiter, you can specify it using the sep parameter.

df_semicolon = pd.read_csv('data_semicolon.csv', sep=';')
print(df_semicolon.head())

Example with Tab (\t) as Delimiter

If your CSV file uses a tab (\t) as a delimiter, specify it using the sep parameter.

df_tab = pd.read_csv('data_tab.csv', sep='\t')
print(df_tab.head())

Handling Index Columns

Sometimes, you may want to set a specific column as the index.

Setting an Index Column

You can set an index column using the index_col parameter.

df_index = pd.read_csv('data.csv', index_col=0)
print(df_index.head())

Using Multiple Columns as Index

You can also set multiple columns as the index.

df_multi_index = pd.read_csv('data.csv', index_col=[0, 1])
print(df_multi_index.head())

Advanced Data Reading Techniques

Using usecols to Select Specific Columns

You can use the usecols parameter to read specific columns from a CSV file.

df_usecols = pd.read_csv('data.csv', usecols=['Column1', 'Column3'])
print(df_usecols.head())

Handling Missing Values

You can handle missing values while reading a CSV file using the na_values parameter.

df_na = pd.read_csv('data.csv', na_values=['NA', 'None'])
print(df_na.head())

Saving DataFrames to Files

You can save DataFrames to different file formats. For example, to save a DataFrame to a CSV file:

df.to_csv('output.csv', index=False)

You can also save it to other formats like Excel or JSON:

# Saving to Excel
df.to_excel('output.xlsx', index=False)

# Saving to JSON
df.to_json('output.json')

Conclusion

Pandas is an incredibly versatile library that makes data manipulation and analysis straightforward and efficient. By mastering the various ways to read data and use in-built functions, you can handle almost any data-related task. Practice these techniques, and you’ll become a Pandas pro in no time!

Stay tuned for more tutorials where we'll dive deeper into data analysis with Pandas and other libraries. Happy coding!

Thank you for reading! If you found this post helpful, share it with your friends and family. Happy learning!

27 views0 comments

Recent Posts

See All

Comments


bottom of page